The kinetic energy acquired by a body of mass m is travelling some distance s, starting from rest under the actions of a constant force, is directly proportional to

  • A

    ${m^0}$

  • B

    $m$

  • C

    ${m^2}$

  • D

    $\sqrt m $

Similar Questions

If the kinetic energy of a body is directly proportional to time $t$, the magnitude of force acting on the body is 
$(i)$ directly proportional to $\sqrt t$
$(ii)$ inversely proportional to $\sqrt t$
$(iii)$ directly proportional to the speed of the body
$(iv)$ inversely proportional to the speed of body

A stone tied to a string $L$ is whirled in a vertical circle, with the other end of the string at the centre. At a certain instant of time, the stone is as its lowest position and has a speed $u$. the magnitude of the change in its velocity as it reaches a position where the string is horizontal is

Figure shows the vertical section of frictionless surface. $A$ block of mass $2\, kg$ is released from the position $A$ ; its $KE$ as it reaches the position $C$ is ................ $\mathrm{J}$

A uniform chain of length $2\,m$ is kept on a table such that a length $60\,cm$ hangs freely from the edge of the table. The total mass of chain is $4\,kg$. The work done in pulling the entire chain on the table is ............. $\mathrm{J}$ (Take $g = 10\,m/s^2$)

Figure shows the vertical section of frictionless surface. A block of mass $2\, kg$ is released from the position $A$ ; its $KE$ as it reaches the position $C$ is ............ $\mathrm{J}$