A steel rod of length $1\,m$ and area of cross section $1\,cm^2$ is heated from $0\,^oC$ to $200\,^oC$ without being allowed to extend or bend. Find the tension produced in the rod $(Y = 2.0 \times 10^{11}\,Nm^{-2}$,  $\alpha = 10^{-5} C^{-1})$ 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Rise in temperature $\Delta t=200^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}=200^{\circ} \mathrm{C}$

Tension produced in the rod,

$F=\mathrm{YA} \alpha \Delta t$

$=2 \times 10^{11} \times 1 \times 10^{-4} \times 10^{-5} \times 200$

$=4 \times 10^{4} \mathrm{~N}$

Similar Questions

The Young's modulus of a wire of length $L$ and radius $r$ is $Y$ $N/m^2$. If the length and radius are reduced to $L/2$ and $r/2,$ then its Young's modulus will be

A compressive force, $F$ is applied at the two ends of a long thin steel rod. It is heated, simultaneously, such that its temperature increases by $\Delta T$. The net change in its length is zero. Let $l$ be the length of the rod, $A$ its area of cross- section, $Y$ its Young's modulus, and $\alpha $ its coefficient of linear expansion. Then, $F$ is equal to

  • [JEE MAIN 2017]

A uniform copper rod of length $50 \,cm$ and diameter $3.0 \,mm$ is kept on a frictionless horizontal surface at $20^{\circ} C$. The coefficient of linear expansion of copper is $2.0 \times 10^{-5} \,K ^{-1}$ and Young's modulus is $1.2 \times 10^{11} \,N / m ^2$. The copper rod is heated to $100^{\circ} C$, then the tension developed in the copper rod is .......... $\times 10^3 \,N$

The ratio of the lengths of two wires $A$ and $B$ of same material is $1 : 2$ and the ratio of their diameter is $2 : 1.$ They are stretched by the same force, then the ratio of increase in length will be

Two wires are made of the same material and have the same volume. However wire $1$ has crosssectional area $A$ and wire $2$ has cross-section area $3A$. If the length of wire $1$ increases by $\Delta x$ on applying force $F$, how much force is needed to stretch wire $2$ by the same amount?