A stream of charged particles enter into a region with crossed electric and magnetic fields as shown in the figure below. On the other side is a screen with a hole that is right on the original path of the particles. Then,

210649-q

  • [KVPY 2009]
  • A

    no particle can get through the hole

  • B

    all particles can get through the hole

  • C

    only positively charged particles with speed $\frac{E}{B}$ can get through the hole

  • D

    all particles with speed $\frac{E}{B}$ can get through the hole

Similar Questions

An electron (charge $q$ $coulomb$) enters a magnetic field of $H$ $weber/{m^2}$ with a velocity of $v\,m/s$ in the same direction as that of the field the force on the electron is

A proton with a kinetic energy of $2.0\,eV$ moves into a region of uniform magnetic field of magnitude $\frac{\pi}{2} \times 10^{-3}\,T$. The angle between the direction of magnetic field and velocity of proton is $60^{\circ}$. The pitch of the helical path taken by the proton is $..........cm$ (Take, mass of proton $=1.6 \times 10^{-27}\,kg$ and Charge on proton $=1.6 \times 10^{-19}\,kg)$

  • [JEE MAIN 2023]

A homogeneous electric field $E$ and a uniform magnetic field $\mathop B\limits^ \to $ are pointing in the same direction. A proton is projected with its velocity parallel to $\mathop E\limits^ \to $. It will

A charge particle of charge $q$ and mass $m$ is accelerated through a potential diff. $V\, volts$. It enters a region of orthogonal magnetic field $B$. Then radius of its circular path will be

A charged particle moves in a magnetic field $\vec B = 10\,\hat i$ with initial velocity $\vec u = 5\hat i + 4\hat j$ The path of the  particle will be