Two particles $A$ and $B$ having equal charges $+6\,C$, after being accelerated through the same potential difference, enter in a region of uniform magnetic field and describe circular paths of radii $2\,cm$ and $3\,cm$ respectively. The ratio of mass of $A$ to that of $B$ is
$\frac{4}{9}$
$\frac{9}{5}$
$\frac{1}{2}$
$\frac{1}{3}$
A deutron of kinetic energy $50\, keV$ is describing a circular orbit of radius $0.5$ $metre$ in a plane perpendicular to magnetic field $\overrightarrow B $. The kinetic energy of the proton that describes a circular orbit of radius $0.5$ $metre$ in the same plane with the same $\overrightarrow B $ is........$keV$
The magnetic force acting on charged particle of charge $2\,\mu C$ in magnetic field of $2\, T$ acting in $y-$ direction , when the particle velocity is $\left( {2\hat i + 3\hat j} \right) \times {10^6}\,m{s^{ - 1}}$ is
In the given figure, the electron enters into the magnetic field. It deflects in ...... direction
An ionized gas contains both positive and negative ions. If it is subjected simultaneously to an electric field along the $+x$ direction and a magnetic field along the $+z$ direction, then
A beam of well collimated cathode rays travelling with a speed of $5 \times {10^6}\,m{s^{ - 1}}$ enter a region of mutually perpendicular electric and magnetic fields and emerge undeviated from this region. If $| B |=0.02\; T$, the magnitude of the electric field is