A string $1\,m$ long is drawn by a $300\,Hz$ vibrator attached to its end. The string vibrates in three segments. The speed of transverse waves in the string is equal to ..... $m/s$
$100$
$200$
$300$
$400$
When two waves of almost equal frequencies $v_1$ and $v_2$ reach at a point simultaneously, the time interval between successive maxima is
Two pipes are each $50\,cm$ in length. One of them is closed at one end while the other is both ends. The speed of sound in air is $340\,ms^{-1}.$ The frequency at which both the pipes can resonate is
A uniform rope of length $L$ and mass $m_1$ hangs vertically from a rigid support. A block of mass $m_2$ is attached to the free end of the rope. A transverse pulse of wavelength $\lambda _1$ is produced at the lower end of the rope. The wavelength of the pulse when it reaches the top of the rope is $\lambda _2$ . The ratio $\lambda _2/\lambda _1$ is
A transverse wave is described by the equation $y = {y_0}\,\sin \,2\pi \left( {ft - \frac{x}{\lambda }} \right)$ . The maximum particle velocity is equal to four times the wave velocity if
Two identical sounds $S_1$ and $S_2$ reach at a point $P$ in phase. The resultant loudness at point $P$ is $n\,\, dB$ higher than the loudness of $S_1$. The value of $n$ is