A string fixed at one end is vibrating in its second overtone. The length of the string is $10\ cm$ and maximum amplitude of vibration of particles of the string is $2\ mm$ . Then the amplitude of the particle at $9\ cm$ from the open end is
$\sqrt 3\ mm$
$\sqrt 2\ mm$
$\frac{{\sqrt 3 }}{2}$
None of these
Which of the following is correct ?
A massless rod is suspended by two identical strings $AB$ and $CD$ of equal length. A block of mass $m$ is suspended from point $ O $ such that $BO$ is equal to $’x’$. Further, it is observed that the frequency of $1^{st}$ harmonic (fundamental frequency) in $AB$ is equal to $2^{nd}$ harmonic frequency in $CD$. Then, length of $BO$ is
The wave described by $y = 0.25\,\sin \,\left( {10\pi x - 2\pi t} \right)$ , where $x$ and $y$ are in $meters$ and $t$ in $seconds$ , is a wave travelling along is
Two identical piano wires, kept under the same tension $T$ have a fundamental frequency of $600\, Hz$. The fractional increase in the tension of one of the wires which will lead to occurrence of $6\, beats/s$ when both the wires oscillate together would be
When two waves of almost equal frequencies $v_1$ and $v_2$ reach at a point simultaneously, the time interval between successive maxima is