A string with a mass density of $4\times10^{-3}\, kg/m$ is under tension of $360\, N$ and is fixed at both ends. One of its resonance frequencies is $375\, Hz$. The next higher resonance frequency is $450\, Hz$. The mass of the string is
$2\times10^{-3}\, kg$
$3\times10^{-3}\, kg$
$4\times10^{-3}\, kg$
$8\times10^{-3}\, kg$
A car $P$ approaching a crossing at a speed of $10\, m/s$ sounds a horn of frequency $700\, Hz$ when $40\, m$ in front of the crossing. Speed of sound in air is $340\, m/s$. Another car $Q$ is at rest on a road which is perpendicular to the road on which car $P$ is reaching the crossing (see figure). The driver of car $Q$ hears the sound of the horn of car $P$ when he is $30\, m$ in front of the crossing. The apparent frequency heard by the driver of car $Q$ is .... $Hz$
Two tuning forks $A$ and $B$ produce $8\,beats/s$ when sounded together. $A$ gas column $37.5\,cm$ long in a pipe closed at one end resonate to its fundamental mode with fork $A$ whereas a column of length $38.5\,cm$ of the same gas in a similar pipe is required for resonance with fork $B$. The frequencies of these two tuning forks, are
The diagram shows snapshot of a wave at time $t = 0$. The particle at $x = x_1$ is moving upward at that instant. Direction of propagation of wave is
The velocities of sound at the same pressure in two monatomic gases of densities ${\rho _1}$ and ${\rho _2}$ are $v_1$ and $v_2$ respectively. ${\rho _1}/{\rho _2} = 2$, then the value of $\frac{{{v_1}}}{{{v_2}}}$ is
A metallic wire of length $L$ is fixed between two rigid supports. If the wire is cooled through a temperature difference $\Delta T (Y =$ young’s modulus, $\rho =$ density, $\alpha =$ coefficient of linear expansion) then the frequency of transverse vibration is proportional to :