The transverse displacement of a string (clamped at its both ends) is given by $y(x,t) = 0.06$ $sin\, (2\pi x /3)\, cos\, (120\, \pi t)$. All the points on the string between two consecutive nodes vibrate with

  • A

    Different frequency

  • B

    Same phase

  • C

    Same energy

  • D

    Same amplitude

Similar Questions

Two vibrating strings of the same material but lengths $L$ and $2L$ have radii $2r$ and $r$ respectively. They are stretched under the same tension . Both the strings vibrate in their fundamental modes, the one of length $L$ with frequency $f_1$ and the other with frequency $f_2$. The ratio $\frac{f_1}{f_2}$ is given by

The amplitude of a wave disturbance propagating in the positive $X-$ direction is given by $y = 1/(1 + x^2)$ at time $t = 0$ and by $y = 1/[1 + (x -1)^2]$ at $t = 2$ seconds, where $x$ and $y$ are in metres. The shape of the wave disturbance does not change during the propagation. The velocity of the wave is ..... $ms^{-1}$

A wave travelling along the $x- $ axis is described by the equation $y(x, t) = 0.005\,\,cos(\alpha x\,-\,\beta t).$  If the wavelength and the time period of the wave are $0.08 \,\,m$ and $2.0\,\,s,$  respectively, then $\alpha $ and $\beta $ in appropriate units are

Two tuning forks $A$ and $B$ produce $8\,beats/s$ when sounded together. $A$ gas column $37.5\,cm$ long in a pipe closed at one end resonate to its fundamental mode with fork $A$ whereas a column of length $38.5\,cm$ of the same gas in a similar pipe is required for resonance with fork $B$. The frequencies of these two tuning forks, are

In a sinusoidal wave, the time required for a particular point to move from maximum displacement to zero displacement is $0.170 \,s$. The frequency of wave is ........ $Hz$