A tangent having slope of $-\frac{4}{3}$ to the ellipse $\frac{{{x^2}}}{{18}}$ + $\frac{{{y^2}}}{{32}}$ $= 1$ intersects the major and minor axes in points $A$ and $ B$ respectively. If $C$ is the centre of the ellipse then the area of the triangle $ ABC$ is : .............. $\mathrm{sq. \,units}$
$12$
$24 $
$36$
$48 $
If the eccentricity of the two ellipse $\frac{{{x^2}}}{{169}} + \frac{{{y^2}}}{{25}} = 1$ and $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ are equal, then the value of $a/b$ is
Find the equation for the ellipse that satisfies the given conditions: Vertices $(\pm 6,\,0),$ foci $(\pm 4,\,0)$
Equation of the ellipse whose axes are the axes of coordinates and which passes through the point $(-3,1) $ and has eccentricity $\sqrt {\frac{2}{5}} $ is
If the radius of the largest circle with centre $(2,0)$ inscribed in the ellipse $x^2+4 y^2=36$ is $r$, then $12 r^2$ is equal to
If $OB$ is the semi-minor axis of an ellipse, $F_1$ and $F_2$ are its foci and the angle between $F_1B$ and $F_2B$ is a right angle, then the square of the eccentricity of the ellipse is