If $ \tan\ \theta _1. tan \theta _2 $ $= -\frac{{{a^2}}}{{{b^2}}}$ then the chord joining two points $\theta _1 \& \theta _2$ on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}}$ $= 1$ will subtend a right angle at :
focus
centre
end of the major axis
end of the minor axis
For the ellipse $3{x^2} + 4{y^2} = 12$, the length of latus rectum is
If the foci of an ellipse are $( \pm \sqrt 5 ,\,0)$ and its eccentricity is $\frac{{\sqrt 5 }}{3}$, then the equation of the ellipse is
The number of real tangents that can be drawn to the ellipse $3x^2 + 5y^2 = 32$ passing through $(3, 5)$ is
A vertical line passing through the point $(h, 0)$ intersects the ellipse $\frac{x^2}{4}+\frac{y^2}{3}=1$ at the points $P$ and $Q$. Let the tangents to the ellipse at $P$ and $Q$ meet at the point $R$. If $\Delta(h)=$ area of the triangle $P Q R, \Delta_1=\max _{1 / 2 \leq h \leq 1} \Delta(h)$ and $\Delta_2=\min _{1 / 2 \leq h \leq 1} \Delta(h)$, then $\frac{8}{\sqrt{5}} \Delta_1-8 \Delta_2=$