A thin hollow copper pipe carries direct current than which is incorrect
Magnetic field inside the pipe is zero
Magnetic field is not zero out side the pipe
Electric field on the surface of pipe is not zero
Electric field outside the pipe is not zero
An electron is projected with velocity $v_0$ in a uniform electric field $E$ perpendicular to the field. Again it is projetced with velocity $v_0$ perpendicular to a uniform magnetic field $B/$ If $r_1$ is initial radius of curvature just after entering in the electric field and $r_2$ is initial radius of curvature just after entering in magnetic field then the ratio $r_1:r_2$ is equal to
A proton is projected with velocity $\overrightarrow{ V }=2 \hat{ i }$ in a region where magnetic field $\overrightarrow{ B }=(\hat{i}+3 \hat{j}+4 \hat{k})\; \mu T$ and electric field $\overrightarrow{ E }=10 \hat{ i } \;\mu V / m .$ Then find out the net acceleration of proton (in $m / s ^{2}$)
An electron accelerated through a potential difference $V$ enters a uniform transverse magnetic field and experiences a force $F$. If the accelerating potential is increased to $2V$, the electron in the same magnetic field will experience a force
A electron $(q = 1.6 \times 10^{-19}\, C)$ is moving at right angle to the uniform magnetic field $3.534 \times 10^{-5}\, T$. The time taken by the electron to complete a circular orbit is......$µs$
Mixed $H{e^ + }$ and ${O^{2 + }}$ ions (mass of $H{e^ + } = 4\,\,amu$ and that of ${O^{2 + }} = 16\,\,amu)$ beam passes a region of constant perpendicular magnetic field. If kinetic energy of all the ions is same then