Gujarati
Hindi
6.System of Particles and Rotational Motion
hard

A thin rod of length $L$ and mass $M$ is held vertically with one end on the floor and is allowed to fall. Find the velocity of the other end when it hits the floor, assuming that the end on the floor does not slip

A

$\sqrt {\frac{{3g}}{L}} $

B

$\sqrt {3gL}$

C

$\sqrt {\frac{L}{{3g}}} $

D

$\sqrt {\frac{g}{{3L}}} $

Solution

Energy conservation $\operatorname{mg} \frac{\mathrm{L}}{2}=\frac{1}{2} \mathrm{I} \omega^{2}$

$\frac{\mathrm{mgL}}{2}=\frac{1}{2}\left(\frac{\mathrm{mL}^{2}}{3}\right) \omega^{2}$

$\omega=\sqrt{\frac{3 g}{L}}$

$\mathrm{V}=\mathrm{L} \omega=\sqrt{3 \mathrm{gL}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.