- Home
- Standard 11
- Physics
For the pivoted slender rod of length $l$ as shown in figure, the angular velocity as the bar reaches the vertical position after being released in the horizontal position is

$\sqrt {\frac{g}{{\text{l}}}} $
$\sqrt {\frac{{24g}}{{19{\text{l}}}}} $
$\sqrt {\frac{{24g}}{{7{\text{l}}}}} $
$\sqrt {\frac{{4g}}{{\text{l}}}} $
Solution
By parallel axis theorem, the moment of inertia of the rod about the hinge is
$\Rightarrow \frac{m l^{2}}{12}+m\left(\frac{l}{4}\right)^{2}=\frac{7 m l^{2}}{48}$
When the rod reaches the vertical position the center of mass of the rod falls by $l 4$ By conservation of energy.
$\Rightarrow \frac{m g l}{4}=\frac{1}{2} I w^{2}\left[I=\frac{7 m l^{2}}{48}\right]$
$\therefore w=\left(\frac{24}{7} g l\right)^{\frac{\mathrm{1}}{2}}$
Hence, the answer is $\left(\frac{24}{7} g l\right)^{\frac{1}{2}}$