A tiny $0.50\, gm$ ball carries a charge of magnitude $10\, \mu C$. It is suspended by a thread in a downward electric field of intensity $300\, N/C$. If the charge on the ball is positive, then the tension in the string is

  • A

    $5 \times {10^{ - 3}}\,N$

  • B

    $8 \times {10^{ - 3}}\,N$

  • C

    $2 \times {10^{ - 3}}\,N$

  • D

    Zero

Similar Questions

The charge per unit length of the four quadrant of the ring is $2\ \lambda , - 2\ \lambda , \lambda$ and $- \lambda$ respectively. The electric field at the centre is

Two identical non-conducting solid spheres of same mass and charge are suspended in air from a common point by two non-conducting, massless strings of same length. At equilibrium, the angle between the strings is $\alpha$. The spheres are now immersed in a dielectric liquid of density $800 kg m ^{-3}$ and dielectric constant $21$ . If the angle between the strings remains the same after the immersion, then

$(A)$ electric force between the spheres remains unchanged

$(B)$ electric force between the spheres reduces

$(C)$ mass density of the spheres is $840 kg m ^{-3}$

$(D)$ the tension in the strings holding the spheres remains unchanged

  • [IIT 2020]

If the net electric field at point $\mathrm{P}$ along $\mathrm{Y}$ axis is zero, then the ratio of $\left|\frac{q_2}{q_3}\right|$ is $\frac{8}{5 \sqrt{x}}$, where $\mathrm{x}=$. . . . . .

  • [JEE MAIN 2024]

A pendulum bob of mass $30.7 \times {10^{ - 6}}\,kg$ and carrying a charge $2 \times {10^{ - 8}}\,C$ is at rest in a horizontal uniform electric field of $20000\, V/m$. The tension in the thread of the pendulum is $(g = 9.8\,m/{s^2})$

Suppose a uniformly charged wall provides a uniform electric field of $2 \times 10^4 \mathrm{~N} / \mathrm{C}$ normally. A charged particle of mass $2 \mathrm{~g}$ being suspended through a silk thread of length $20 \mathrm{~cm}$ and remain stayed at a distance of $10 \mathrm{~cm}$ from the wall. Then the charge on the particle will be $\frac{1}{\sqrt{\mathrm{x}}} \ \mu \mathrm{C}$ where $\mathrm{x}=$ ____________.  use $g=10 \mathrm{~m} / \mathrm{s}^2$ ]

  • [JEE MAIN 2024]