A toy gun fires a plastic pellet with a mass of $0.5\  g$. The pellet is propelled by a spring with a spring constant of $1.25\  N/cm$, which is compressed $2.0\  cm$ before firing. The plastic pellet travels horizontally $10\  cm$ down the barrel (from its compressed position) with a constant friction force of $0.0475\  N$. What is the speed (in $SI\  units$) of the bullet as it emerges from the barrel?

819-369

  • A

    $5$

  • B

    $7$

  • C

    $9$

  • D

    $11$

Similar Questions

A $0.5 \,kg$ block moving at a speed of $12 \,ms ^{-1}$ compresses a spring through a distance $30\, cm$ when its speed is halved. The spring constant of the spring will be $Nm ^{-1}$.

  • [JEE MAIN 2022]

In a spring gun having spring constant $100\, {N} / {m}$ a small ball $'B'$ of mass $100\, {g}$ is put in its barrel (as shown in figure) by compressing the spring through $0.05\, {m}$. There should be a box placed at a distance $'d'$ on the ground so that the ball falls in it. If the ball leaves the gun horizontally at a height of $2\, {m}$ above the ground. The value of $d$ is $....{m} .$ $\left(g=10\, {m} / {s}^{2}\right)$

  • [JEE MAIN 2021]

What is spring constant ? On which the work done by a spring depends ?

A $1\; kg$ block situated on a rough incline is connected to a spring of spring constant $100\;N m ^{-1}$ as shown in Figure. The block is released from rest with the spring in the unstretched position. The block moves $10 \;cm$ down the incline before coming to rest. Find the coefficient of friction between the block and the incline. Assume that the spring has a negligible mass and the pulley is frictionless.

$A$ block of mass $m$ moving with a velocity $v_0$ on a smooth horizontal surface strikes and compresses a spring of stiffness $k$ till mass comes to rest as shown in the figure. This phenomenon is observed by two observers:

$A$: standing on the horizontal surface

$B$: standing on the block 

To an observer $A$, the work done by spring force is