A spring $40 \,mm$ long is stretched by the application of a force. If $10 \,N$ force required to stretch the spring through $1 \,mm$, then work done in stretching the spring through $40\, mm$ is ............. $\mathrm{J}$
$84$
$68$
$23$
$8$
The $P.E.$ of a certain spring when stretched from natural length through a distance $0.3\, m$ is $10\, J$. The amount of work in joule that must be done on this spring to stretch it through an additional distance $0.15\, m$ will be ................ $\mathrm{J}$
$A$ small block of mass $m$ is placed on $a$ wedge of mass $M$ as shown, which is initially at rest. All the surfaces are frictionless . The spring attached to the other end of wedge has force constant $k$. If $a'$ is the acceleration of $m$ relative to the wedge as it starts coming down and $A$ is the acceleration acquired by the wedge as the block starts coming down, then
Two masses $m_1 = 2\,kg$ and $m_2 = 5\,kg$ are moving on a frictionless surface with velocities $10\,m/s$ and $3\,m/s$ respectively. An ideal spring is attached on the back of $m_2$ . The maximum compression of the spring will be ............... $\mathrm{m}$
$A$ block of mass $m$ moving with a velocity $v_0$ on a smooth horizontal surface strikes and compresses a spring of stiffness $k$ till mass comes to rest as shown in the figure. This phenomenon is observed by two observers:
$A$: standing on the horizontal surface
$B$: standing on the block
To an observer $B$, when the block is compressing the spring
Find the maximum tension in the spring if initially spring at its natural length when block is released from rest.