A transverse pulse generated at the bottom of a uniform rope of length $L$, travels in upward direction. The time taken by it to travel the full length of rope will be

  • A

    $\sqrt{\frac{L}{2 g}}$

  • B

    $\sqrt{\frac{2 L}{g}}$

  • C

    $\sqrt{\frac{L}{g}}$

  • D

    $\sqrt{\frac{4 L}{g}}$

Similar Questions

A wire of $10^{-2} kgm^{-1}$ passes over a frictionless light pulley fixed on the top of a frictionless inclined plane which makes an angle of $30^o$ with the horizontal. Masses $m$ and $M$ are tied at two ends of wire such that m rests on the plane and $M$ hangs freely vertically downwards. The entire system is in equilibrium and a transverse wave propagates along the wire with a velocity of $100 ms^{^{-1}}$.

A wire stretched between two rigid supports vibrates in its fundamental mode with a frequency of $45 \;Hz$. The mass of the wire is $3.5 \times 10^{-2} \;kg$ and its linear mass density is $4.0 \times 10^{-2} \;kg m ^{-1} .$ What is

$(a) $ the speed of a transverse wave on the string, and

$(b)$ the tension in the string?

Mechanical waves on the surface of a liquid are

A heavy ball of mass $M$ is suspended from the ceiling of car by a light string of mass $m (m << M)$. When the car is at rest, the speed of transverse waves in the string is $60\, ms^{-1}$. When the car has acceleration $a$ , the wave-speed increases to $60.5\, ms^{-1}$. The value of $a$ , in terms of gravitational acceleration $g$ is closest to

  • [JEE MAIN 2019]

The extension in a string, obeying Hooke's law, is $x$. The speed of sound in the stretched string is $v$. If the extension in the string is increased to $1.5x$, the speed of sound will be