$L$ લંબાઈના એેકરુપ દોરડાના નિચેના છેડે એક લંબગત તરંગ ઉત્પન્ન કરવામાં આવે છે. જે ઉપર તરફ જાય છે. દોરડું પસાર કરતા લાગતો સમય કેટલો હશે.
$\sqrt{\frac{L}{2 g}}$
$\sqrt{\frac{2 L}{g}}$
$\sqrt{\frac{L}{g}}$
$\sqrt{\frac{4 L}{g}}$
યાંત્રિક તરંગોની ઝડપ નક્કી કરવા માધ્યમના કયા ગુણધર્મો જરૂરી છે તે સમજાવો.
$L$ લંબાઈ અને $M$ દળનું એક દોરડું છત પરથી મુકત પાણે લટેકે છે. એક લંબગત તરંગને દોરડાના નિચેના છેડેથી ઉપર પહોંચતા લાગતો સમય $T$ છે, તો મધ્યબિંદુ સુધી તરંગને પહોંચતા લાગતો સમય કેટલો હોય.
એક દોરી (બંને છેડે જડિત)નું લંબગત સ્થાનાંતર
$y(x, t)=0.06 \sin \left(\frac{2 \pi}{3} x\right) \cos (120 \pi t)$
પરથી મળે છે, જ્યાં $x$ અને $y$ $m$ માં અને $t$ $s$ માં છે. દોરીની લંબાઈ $1.5\, m$ અને દળ $3.0 \times 10^{-2}\, kg$ છે.
નીચેના ઉત્તર આપો :
$(a)$ આ વિધેય પ્રગામી તરંગ કે સ્થિત તરંગ રજૂ કરે છે ?
$(b)$ આ તરંગનું વિરુદ્ધ દિશામાં ગતિ કરતા બે તરંગોના સંપાતપણા તરીકે અર્થઘટન કરો. દરેક તરંગની તરંગલંબાઈ, આવૃત્તિ અને ઝડપ કેટલા હશે ?
$(c)$ દોરીમાંનો તણાવ શોધો.
તણાવવાળી દોરી પર લંબગત તરંગની ઝડપનું સૂત્ર મેળવો.
ખેંચાણવાળી દોરી પર લંબગત તરંગની ઝડપનું સૂત્ર લખો.