A transverse wave is travelling along a stretched string from right to left. The figure shown represents the shape of the string at a given instant. At this instant
the particles at $A, B$ and $H$ have downward velocity
the particles at $D, E$ and $F$ have downward velocity
the particles at $C, E$ and $G$ have zero velocity
the particles at $A$ and $F$ have maximum velocity
A train whistling at constant frequency is moving towards a station at a constant speed $V$. The train goes past a stationary observer on the station. The frequency $n'$ of the sound as heard by the observer is plotted as a function of time $t (Fig.)$ . Identify the expected curve
The displacement $y$ of a wave travelling in the $x-$ direction is given by $y = {10^{ - 4}}\sin \left( {600t - 2x+\frac{\pi }{3}} \right)$ metre, where $x$ is expressed in metres and $t$ in seconds. The speed of the wave in $ms^{-1}$, is
Two cars $A$ and $B$ are moving in the same direction with speeds $36\, km/hr$ and $54 \,km/hr$ respectively. Car $B$ is ahead of $A$. If $A$ sounds horn of frequency $1000\, Hz$ and the speed of sound in air is $340\, m/s$, the frequency of sound received by the driver of car $B$ is ..... $Hz$
The velocities of sound at the same pressure in two monatomic gases of densities ${\rho _1}$ and ${\rho _2}$ are $v_1$ and $v_2$ respectively. ${\rho _1}/{\rho _2} = 2$, then the value of $\frac{{{v_1}}}{{{v_2}}}$ is
A string $1\,m$ long is drawn by a $300\,Hz$ vibrator attached to its end. The string vibrates in three segments. The speed of transverse waves in the string is equal to ..... $m/s$