An organ pipe $P_1$ closed at one end vibrating in its first overtone. Another pipe $P_2$ open at both ends is vibrating in its third overtone. They are in a resonance with a given tuning fork. The ratio of the length of $P_1$ to that of $P_2$ is
$2.67$
$0.37$
$0.5$
$0.75$
A racing car moving towards a cliff sounds its horn. The driver observes that the sound reflected from the cliff has a pitch one octave higher than the actual sound of the horn. If $v$ is the velocity of sound, the velocity of the car will be
The amplitude of a wave disturbance propagating in the positive $X-$ direction is given by $y = 1/(1 + x^2)$ at time $t = 0$ and by $y = 1/[1 + (x -1)^2]$ at $t = 2$ seconds, where $x$ and $y$ are in metres. The shape of the wave disturbance does not change during the propagation. The velocity of the wave is ..... $ms^{-1}$
A transverse wave is described by the equation $y = {y_0}\sin 2\pi \left( {ft - \frac{x}{\lambda }} \right)$. The maximum particle velocity is equal to four times wave velocity if
Two vibrating tuning forks produce waves given by ${y_1} = 4\sin 500\pi t$ and ${y_2} = 2\sin 506\pi t.$ Number of beats produced per minute is
A train standing at the outer signal of a railway station blows a whistle of frequency $400\, Hz$ in still air. What is the frequency of the whistle for a platform observer when the train recedes from the platform with a speed of $10\, m/s$ ...... $Hz$ . (Speed of sound $= 340\, m/s$)