A tuning fork of frequency $280\,\, Hz$ produces $10$ beats per sec when sounded with a vibrating sonometer string. When the tension in the string increases slightly, it produces $11$ beats per sec. The original frequency of the vibrating sonometer string is ... $Hz$
$269$
$291$
$270 $
$290$
A second harmonic has to be generated in a string of length $l$ stretched between two rigid supports. The point where the string has to be plucked and touched are
A vibrating string of certain length $l$ under a tension $T$ reasonates with a mode corresponding to the first overtone (third harmonic) of an air column of length $75$ $cm$ inside a tube closed at one end. The string also generates $4$ beats per second when excited along with a tuning fork of frequency $n$. Now when the tension of the string is slightly increased the number of beats reduces to $2$ per second. Assuming the velocity of sound in air to be $340$ $m/s$, the frequency $n$ of the tuning fork in $Hz $ is
The length of a sonometer wire is $0.75\, m$ and density $9 \times 10^3\, kg/m^3$. It can bear a stress of $8.1 \times 10^8\, N/m^2$ without exceeding the elastic limit. What is the fundamental frequency that can be produced in the wire .... $Hz$ ?
A second harmonic has to be generated in a string of length $l$ stretched between two rigid supports. The points where the string has to be plucked and touched are respectively
A tuning fork vibrating with a sonometer having a wire of length $20 \,cm$ produces $5$ beats per second. The beats frequency does not change if the length of the wire is changed to $21 \,cm$. The frequency of the tuning fork must be ............ $Hz$