A uniform disc is acted by two equal forces of magnitude F. One of them, acts tangentially to the disc, while other one is acting at the central point of the disc. The friction between disc surface and ground surface is $nF$. If $r$ be the radius of the disc, then the value of $n$ would be (in $N$ )

  • [AIIMS 2015]
  • A

    $0$

  • B

    $1.2$

  • C

    $2$

  • D

    $3.2$

Similar Questions

Figure below shows a shampoo bottle in a perfect cylindrical shape. In a simple experiment, the stability of the bottle filled with different amount of shampoo volume is observed. The bottle is tilted from one side and then released. Let the angle $\theta$ depicts the critical angular displacement resulting, in the bottle losing its stability and tipping over. Choose the graph correctly depicting the fraction $f$ of shampoo filled $(f=1$ corresponds to completely filled) versus the tipping angle $\theta$

  • [KVPY 2020]

The spool shown in figure is placed on rough horizontal surface and has inner radius $r$ and outer radius $R$. The angle $\theta$ between the applied force and the horizontal can be varied. The critical angle $(\theta )$ for which the spool does not roll and remains stationary is given by 

A uniform rod of length $L$ and weight $W$ is suspended horizontally by two vertical ropes as shown. The first rope is attached to the left end of the rod while the second rope is attached a distance $L /4$ from the right end. The tension in the second rope is 

$A$ body weighs $6$ gms when placed in one pan and $24$ gms when placed on the other pan of a false balance. If the beam is horizontal when both the pans are empty, the true weight of the body is ....... $gm$.

A uniform rod $AB$ of length $l$ and mass $m$ is free to rotate about point $A.$ The rod is released from rest in the horizontal position. Given that the moment of inertia of the rod about $A$ is $ml^2/3$, the initial angular acceleration of the rod will be 

  • [AIPMT 2007]