A uniform electric field and a uniform magnetic field are acting along the same direction in a certain region. If an electron is projected in the region such that its velocity is pointed along the direction of fields, then the electron

  • [AIPMT 2011]
  • A

    will turn towards right of direction of motion

  • B

    will turn towards left of direction of motion

  • C

    speed will increase

  • D

    speed will decrease

Similar Questions

A proton enters a magnetic field of flux density $1.5\,weber/{m^2}$ with a velocity of $2 \times {10^7}\,m/\sec $ at an angle of $30^\circ $ with the field. The force on the proton will be

A particle of mass $m = 1.67 \times 10^{-27}\, kg$ and charge $q = 1.6 \times 10^{-19} \, C$ enters a region of uniform magnetic field of strength $1$ $tesla$ along the direction shown in the figure. the time spent by the particle in the magnetic field is......$ns$

An electron with energy $880 \,eV$ enters a uniform magnetic field of induction $2.5 \times 10^{-3}\,T$. The radius of path of the circle will approximately be :

A particle of charge per unit mass $\alpha$ is released from origin with a velocity $\bar{v}=v_0 \vec{i}$ in a uniform magnetic field $\bar{B}=-B_0 \hat{k}$. If the particle passes through $(0, y, 0)$ then $y$ is equal to

A particle of mass $m$ and charge $q$ enters a region of magnetic field (as shown) with speed $v$. There is a region in which the magnetic field is absent, as shown. The particle after entering the region collides elas tically with a rigid wall. Time after which the velocity of particle becomes anti parallel to its initial velocity is