A uniform magnetic field acts at right angles to the direction of motion of electrons. As a result, the electron moves in a circular path of radius $2\, cm$. If the speed of the electrons is doubled, then the radius of the circular path will be.....$cm$
$2$
$0.5$
$4$
$1$
An electron (mass $= 9 \times 10^{-31}\,kg$. Charge $= 1.6 \times 10^{-19}\,C$) whose kinetic energy is $7.2 \times 10^{-18}$ $joule$ is moving in a circular orbit in a magnetic field of $9 \times 10^{-5} \,weber/m^2$. The radius of the orbit is.....$cm$
If two streams of protons move parallel to each other in the same direction, then they
A proton of mass $m$ and charge $+e$ is moving in a circular orbit in a magnetic field with energy $1\, MeV$. What should be the energy of $\alpha - $particle (mass = $4m$ and charge = $+ 2e),$ so that it can revolve in the path of same radius.......$MeV$
If an electron enters a magnetic field with its velocity pointing in the same direction as the magnetic field, then
An electron and a proton enter region of uniform magnetic field in a direction at right angles to the field with the same kinetic energy. They describe circular paths of radius ${r_e}$ and ${r_p}$ respectively. Then