Gujarati
Hindi
6.System of Particles and Rotational Motion
normal

A uniform rod $AB$ of weight $100\, N$ rests on a rough peg at $C$ and $a$ force $F$ acts at $A$ as shown in figure. If $BC = CM$ and tana $= 4/3$. The minimum coefficient of friction at $C$ is

A

$9/8$

B

$3/2$

C

$8/7$

D

$4/3$

Solution

net torque $=0$

 about $c$

$\mathrm{Mg}\left(\frac{\ell}{2}\right) \sin \alpha-\mathrm{F}\left(\frac{3 \ell}{2}\right)=0$    $…(i)$

${\left(F_{\text {net }}\right)_{y}=0}$               $…(ii)$

${F+N-M g \sin \alpha=0}$         

$\left(F_{\text {net }}\right)_{x} =0$

$f_{\max } =M g \cos \alpha=0 $           $…(iii)$

$f_{\max }=\mu N$          $…(iv)$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.