- Home
- Standard 11
- Physics
6.System of Particles and Rotational Motion
normal
A uniform rod $AB$ of weight $100\, N$ rests on a rough peg at $C$ and $a$ force $F$ acts at $A$ as shown in figure. If $BC = CM$ and tana $= 4/3$. The minimum coefficient of friction at $C$ is

A
$9/8$
B
$3/2$
C
$8/7$
D
$4/3$
Solution

net torque $=0$
about $c$
$\mathrm{Mg}\left(\frac{\ell}{2}\right) \sin \alpha-\mathrm{F}\left(\frac{3 \ell}{2}\right)=0$ $…(i)$
${\left(F_{\text {net }}\right)_{y}=0}$ $…(ii)$
${F+N-M g \sin \alpha=0}$
$\left(F_{\text {net }}\right)_{x} =0$
$f_{\max } =M g \cos \alpha=0 $ $…(iii)$
$f_{\max }=\mu N$ $…(iv)$
Standard 11
Physics
Similar Questions
medium