6.System of Particles and Rotational Motion
hard

A $\sqrt{34}\,m$ long ladder weighing $10\,kg$ leans on a frictionless wall. Its feet rest on the floor $3\,m$ away from the wall as shown in the figure. If $F_{f}$ and $F_{w}$ are the reaction forces of the floor and the wall, then ratio of $F _{ a } / F _{f}$ will be:

(Use $\left.g=10\,m / s ^{2}\right)$

A

$\frac{6}{\sqrt{110}}$

B

$\frac{3}{\sqrt{113}}$

C

$\frac{3}{\sqrt{109}}$

D

$\frac{2}{\sqrt{109}}$

(JEE MAIN-2022)

Solution

$f = N _{2}$

$N_{1}=m g$

$N _{2} \times \ell \sin \theta= mg \frac{\ell}{2} \cos \theta$

$N _{2}=\frac{ mg }{2} \cot \theta$

$\frac{ F _{w}}{ F _{i}}=\frac{\frac{ mg }{2} \cot \theta}{\sqrt{( mg )^{2}+\left(\frac{ mg }{2} \cot \theta\right)^{2}}}$

$=\frac{1}{\sqrt{1+\frac{4}{\cot ^{2} \theta}}}$

$=\frac{3}{\sqrt{109}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.