A uniform sphere of mass $500\; g$ rolls without slipping on a plane horizontal surface with its centre moving at a speed of $5.00\; \mathrm{cm} / \mathrm{s}$. Its kinetic energy is
$8.75 \times 10^{-4} \;\mathrm{J}$
$8.75 \times 10^{-3} \;\mathrm{J}$
$6.25 \times 10^{-4} \;\mathrm{J}$
$1.13 \times 10^{-} \;\mathrm{J}$
Explain the construction and working of an ideal lever and also explain the principle of momen of force.
A circular disc of moment of inertia $I_t$, is rotating in a horizontal plane, about its symmetry axis, with a constant angular speed $\omega_i$ . Another disc of moment of inertia $l_b$ is dropped coaxially onto the rotating disc. Initially the second disc has zero angular speed. Eventually both the discs rotate with a constant angular speed $\omega_f$. The energy lost by the initially rotating disc to friction is
If a body completes one revolution in $\pi $ $sec$ then the moment of inertia would be
A $70\, kg$ man leaps vertically into the air from a crouching position. To take the leap the man pushes the ground with a constant force $F$ to raise himself The center of gravity rises by $0.5\, m$ before he leaps. After the leap the $c.g.$ rises by another $1\, m$. The maximum power delivered by the muscles is : (Take $g\, = 10\, ms^{-2}$)
A solid sphere and solid cylinder of identical radii approach an incline with the same linear velocity (see figure). Both roll without slipping all throughout. The two climb maximum heights $h_{sph}$ and $h_{cyl}$ on the incline. The radio $\frac{{{h_{sph}}}}{{{h_{cyl}}}}$ is given by