One end of a straight uniform $1\; \mathrm{m}$ long bar is pivoted on horizontal table. It is released from rest when it makes an angle $30^{\circ}$ from the horizontal (see figure). Its angular speed when it hits the table is given as $\sqrt{\mathrm{n}}\; \mathrm{s}^{-1},$ where $\mathrm{n}$ is an integer. The value of $n$ is
$10$
$13$
$15$
$18$
A solid sphere rolls without slipping and presses a spring of spring constant $'k'$ as shown in figure. Then, the compression in the spring will be :-
A disc is rolling without slipping on a straight surface. The ratio of its translational kinetic energy to its total kinetic energy is
Two rotating bodies $A$ and $B$ of masses $m$ and $2\,m$ with moments of inertia $I_A$ and $I_B (I_B> I_A)$ have equal kinetic energy of rotation. If $L_A$ and $L_B$ be their angular momenta respectively, then
A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy $(K_t)$ as well as rotational kinetic energy $(K_r)$ simultaneously. The ratio $K_t : (K_t + K_r)$ for the sphere is
A cord is wound round the circumference of wheel of radius $r$. The axis of the wheel is horizontal and moment of inertia about it is $I$. A weight $mg$ is attached to the end of the cord and falls from rest. After falling through a distance $h$, the angular velocity of the wheel will be