A uniformly charged solid sphere of radius $R$ has potential $V_0$ (measured with respect to $\infty$) on its surface. For this sphere the equipotential surfaces with potentials $\frac{{3{V_0}}}{2},\;\frac{{5{V_0}}}{4},\;\frac{{3{V_0}}}{4}$ and $\frac{{{V_0}}}{4}$ have rasius $R_1,R_2,R_3$ and $R_4$ respectively. Then

  • [JEE MAIN 2015]
  • A

    $R_1$$ \ne 0$ and $(R_2-R_1) > (R_4-R_3)$

  • B

    $R_1$ $ = 0$ and $R_2 < (R_4-R_3)$

  • C

    $2R < R_4$

  • D

    $R_1$ $ = 0$ and $ R_2 > (R_4-R_3)$

Similar Questions

Two charges $2 \;\mu\, C$ and $-2\; \mu \,C$ are placed at points $A$ and $B\;\; 6 \;cm$ apart.

$(a)$ Identify an equipotential surface of the system.

$(b)$ What is the direction of the electric field at every point on this surface?

What is an equipotential surface ? Draw an equipotential surfaces for a

$(1)$ single point charge

$(2)$ charge $+ \mathrm{q}$ and $- \mathrm{q}$ at few distance (dipole)

$(3)$ two $+ \mathrm{q}$ charges at few distance

$(4)$ uniform electric field.

Draw an equipotential surface of two identical positive charges for small distance.

Assertion : Two equipotential surfaces cannot cut each other.

Reason : Two equipotential surfaces are parallel to each other.

  • [AIIMS 2011]

Assertion $(A):$ A spherical equipotential surface is not possible for a point charge.

Reason $(R):$ A spherical equipotential surface is possible inside a spherical capacitor.

  • [AIIMS 2015]