A uniformly charged solid sphere of radius $R$ has potential $V_0$ (measured with respect to $\infty$) on its surface. For this sphere the equipotential surfaces with potentials $\frac{{3{V_0}}}{2},\;\frac{{5{V_0}}}{4},\;\frac{{3{V_0}}}{4}$ and $\frac{{{V_0}}}{4}$ have rasius $R_1,R_2,R_3$ and $R_4$ respectively. Then
$R_1$$ \ne 0$ and $(R_2-R_1) > (R_4-R_3)$
$R_1$ $ = 0$ and $R_2 < (R_4-R_3)$
$2R < R_4$
$R_1$ $ = 0$ and $ R_2 > (R_4-R_3)$
Two charges $2 \;\mu\, C$ and $-2\; \mu \,C$ are placed at points $A$ and $B\;\; 6 \;cm$ apart.
$(a)$ Identify an equipotential surface of the system.
$(b)$ What is the direction of the electric field at every point on this surface?
What is an equipotential surface ? Draw an equipotential surfaces for a
$(1)$ single point charge
$(2)$ charge $+ \mathrm{q}$ and $- \mathrm{q}$ at few distance (dipole)
$(3)$ two $+ \mathrm{q}$ charges at few distance
$(4)$ uniform electric field.
Draw an equipotential surface of two identical positive charges for small distance.
Assertion : Two equipotential surfaces cannot cut each other.
Reason : Two equipotential surfaces are parallel to each other.
Assertion $(A):$ A spherical equipotential surface is not possible for a point charge.
Reason $(R):$ A spherical equipotential surface is possible inside a spherical capacitor.