4-1.Complex numbers
medium

A value of $\theta$ for which $\frac{{2 + 3isin\;\theta }}{{1 - 2i\sin \theta }}$ is purely imaginary, is:

A

${\sin ^{ - 1}}\left( {\frac{{\sqrt 3 }}{4}} \right)\;$

B

$\;{\sin ^{ - 1}}\left( {\frac{1}{{\sqrt 3 }}} \right)$

C

$\frac{\pi }{3}$

D

$\;\frac{\pi }{6}$

(JEE MAIN-2016)

Solution

Purely imaginary means real part $=0$

$ \frac{2+3 \sin \theta}{1-2 i \sin \theta} \times \frac{1+2 i \sin \theta}{1+2 i \sin \theta} $

$=\frac{2+4 i \sin \theta+3 i \sin \theta-6 \sin ^{2} \theta}{1-(2 i \sin \theta)^{2}}$

$ =\frac{2+7 i \sin \theta-6 \sin ^{2} \theta}{1+4 \sin ^{2} \theta} $

Real part is $=\frac{2-6 \sin ^{2} \theta}{1+4 \sin ^{2} \theta}$

This is equal to zero.

$ \Rightarrow \frac{2-6 \sin ^{2} \theta}{1+4 \sin ^{2} \theta}=0$

So, $2=6 \sin ^{2} \theta$

$\sin ^{2} \theta=\frac{1}{3}$

$ \sin \theta=\pm \frac{1}{\sqrt{3}} $

$ \therefore \theta=\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right) $

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.