- Home
- Standard 11
- Mathematics
$\theta$ का वह एक मान जिसके लिए $\frac{2+3 i \sin \theta}{1-2 i \sin \theta}$ पूर्णत: काल्पनिक
है, है:
${\sin ^{ - 1}}\left( {\frac{{\sqrt 3 }}{4}} \right)\;$
$\;{\sin ^{ - 1}}\left( {\frac{1}{{\sqrt 3 }}} \right)$
$\frac{\pi }{3}$
$\;\frac{\pi }{6}$
Solution
Purely imaginary means real part $=0$
$ \frac{2+3 \sin \theta}{1-2 i \sin \theta} \times \frac{1+2 i \sin \theta}{1+2 i \sin \theta} $
$=\frac{2+4 i \sin \theta+3 i \sin \theta-6 \sin ^{2} \theta}{1-(2 i \sin \theta)^{2}}$
$ =\frac{2+7 i \sin \theta-6 \sin ^{2} \theta}{1+4 \sin ^{2} \theta} $
Real part is $=\frac{2-6 \sin ^{2} \theta}{1+4 \sin ^{2} \theta}$
This is equal to zero.
$ \Rightarrow \frac{2-6 \sin ^{2} \theta}{1+4 \sin ^{2} \theta}=0$
So, $2=6 \sin ^{2} \theta$
$\sin ^{2} \theta=\frac{1}{3}$
$ \sin \theta=\pm \frac{1}{\sqrt{3}} $
$ \therefore \theta=\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right) $