- Home
- Standard 11
- Physics
A vessel contains $14 \,gm \,(7 $ moles) of hydrogen and $96\, gm$ ($9$ moles) of oxygen at $STP.$ Chemical reaction is induced by passing electric spark in the vessel till one of the gases is consumed. The temperature is brought back to it's starting value $273 K.$ The pressure in the vessel is ...... $atm$

$0.1$
$0.2$
$0.3$
$0.4$
Solution
given that,
mass of hydrogen $=14\; g$
Molar mass of $H_{2}=2\; g m mol ^{-1}$
No. of moles, $n_{H_{2}}=\frac{14}{2}=7 \;moles$
mass of oxygen $=96 \;gm$
Molar mass of $O _{2}=32 \;gmol ^{-1}$
No. of moles, $n_{0_{2}}=\frac{96}{32}=3 \;moles$
Total no. of moles in the vessel, $n=n_{H_{2}}+n_{O_2}$
$n=(7+3)=10 \text { moles }$
Let STP $P =1 atm =10^{5} Pa$
$T=273\; K$
We knows by ideal gas equation, $P V=n R T$
where $P=$ pressure of gas
$V=$ volume of gas
$n=$ amount of substance
$R=$ universal gas coustant
$T=$ absolute temperature
To find $V$, puts all values of $P, n, R, T$ :
$V=\frac{n R T}{P}=\frac{10 \times 8.3 \times 273}{10^{5}} \quad[R=8.3$
$V=0.23 m ^{2}$
chemical reaction is induced bypassing elictric spark in the vessel till one of the gas is consumed. When electric spark is passed. The reaction is
$2 H _{2}+ O _{2} \rightarrow 2 H _{2} O$
Each $1 gm$ of $H _{2}$ reacts with $8 gm ^{ m }$ of $O _{2}$
$\therefore 96 gm$ of oxygen $\rightarrow 12 g$ of $H _{2}$
After consumption:
orygen left $=0$
Hydrogen left $=14-12=2 gm$
No. of moles of $2\; gm$ of $H _{2} \Rightarrow n^{\prime}=\frac{2}{2}=1 \;mol$
$\therefore$ New ideal gas eq.: $P^{\prime} V=n^{\prime} R T$ $\dots (2)$
Dividing eq. $(1)$ and $(2)$:
$\frac{p^{\prime}}{p}=\frac{n^{\prime}}{n} \Rightarrow p^{\prime}=\frac{n^{\prime} p}{n}=\frac{1 \times 10^{5}}{10}=10^{4}$
$p^{\prime}=0.1 \; atm$
The presoure in the vessel is $0.1 \; atm$