A vessel contains oil (density =$ 0.8 \;gm/cm^3$) over mercury (density = $13.6\; gm/cm^3$). A homogeneous sphere floats with half of its volume immersed in mercury and the other half in oil. The density of the material of the sphere in $ gm/cm^3$ is
$3.3$
$6.4$
$ 7.2$
$12.8$
Two cubical blocks identical in dimensions float in water in such a way that $1$ st block floats with half part immersed in water and second block floats with $3 / 4$ of its volume inside the water. The ratio of densities of blocks is ..........
A block of ice floats on a liquid of density $1.2$ in a beaker then level of liquid when ice completely melt
Two non-mixing liquids of densities $\rho $ and $n \rho \,(n > 1)$ are put in a container. The height of each liquid is $h.$ A solid cylinder of length $L$ and density $d$ is put in this container. The cylinder floats with its axis vertical and length $\rho L (\rho < 1)$ in the denser liquid. The density $d$ is equal to
A sphere of solid material of relative density $9$ has a concentric spherical cavity and floats having just sinked in water. If the radius of the sphere be $R$, then the radius of the cavity $(r)$ will be related to $R$ as :-
The area of cross-section of the wider tube shown in figure is $800$ $cm^2$. If a mass of $12$ $ kg $ is placed on the massless piston, the difference in heights $h$ in the level of water in the two tubes is ........ $cm$