6.System of Particles and Rotational Motion
hard

A wheel is rotaing freely with an angular speed $\omega$ on a shaft. The moment of inertia of the wheel is $I$ and the moment of inertia of the shaft is negligible. Another wheel of momet of inertia $3I$ initially at rest is suddenly coupled to the same shaft. The resultant fractional loss in the kinetic energy of the system is :

A

$0$

B

$\frac{1}{4}$

C

$\frac{3}{4}$

D

$\frac{5}{6}$

(JEE MAIN-2020)

Solution

By anglar momentum conservation

$\omega I+3 I \times 0=4 I \omega^{\prime} \Rightarrow \omega^{\prime}=\frac{\omega}{4}$

$( KE )_{ i }=\frac{1}{2} I \omega^{2}$

$( KE )_{ f }=\frac{1}{2} \times(4 I ) \times\left(\frac{\omega}{4}\right)^{2}=\frac{ I \omega^{2}}{8}$

$\Delta KE =\frac{3}{8} I \omega^{2}$

fractional loss $=\frac{\Delta KE }{ KE _{1}}=\frac{\frac{3}{8} I \omega^{2}}{\frac{1}{2} I \omega^{2}}=\frac{3}{4}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.