A wire of density $9 \times 10^{-3} \,kg\, cm ^{-3}$ is stretched between two clamps $1\, m$ apart. The resulting strain in the wire is $4.9 \times 10^{-4}$. The lowest frequency of the transverse vibrations in the wire is......$HZ$
(Young's modulus of wire $Y =9 \times 10^{10}\, Nm ^{-2}$ ), (to the nearest integer),
$35$
$55$
$20$
$40$
A steel wire has a length of $12.0 \;m$ and a mass of $2.10 \;kg .$ What should be the tension in the wire so that speed of a transverse wave on the wire equals the speed of sound in dry air at $20\,^{\circ} C =343\; m s ^{-1}$
The transverse displacement of a string (clamped at its both ends) is given by
$y(x, t)=0.06 \sin \left(\frac{2 \pi}{3} x\right) \cos (120 \pi t)$
where $x$ and $y$ are in $m$ and $t$ in $s$. The length of the string is $1.5\; m$ and its mass is $3.0 \times 10^{-2}\; kg$
Answer the following:
$(a)$ Does the function represent a travelling wave or a stationary wave?
$(b)$ Interpret the wave as a superposition of two waves travelling in opposite directions. What is the wavelength, frequency, and speed of each wave?
$(c)$ Determine the tension in the string.
The linear density of a vibrating string is $1.3 \times 10^{-4}\, kg/m.$ A transverse wave is propagating on the string and is described by the equation $Y = 0.021\, \sin (x + 30t)$ where $x$ and $y$ are measured in meter and $t$ in second the tension in the string is ..... $N$
A wire stretched between two rigid supports vibrates in its fundamental mode with a frequency of $45 \;Hz$. The mass of the wire is $3.5 \times 10^{-2} \;kg$ and its linear mass density is $4.0 \times 10^{-2} \;kg m ^{-1} .$ What is
$(a) $ the speed of a transverse wave on the string, and
$(b)$ the tension in the string?
A uniform rope of mass $6\,kg$ hangs vertically from a rigid support. A block of mass $2\,kg$ is attached to the free end of the rope. A transverse pulse of wavelength $0.06\,m$ is produced at the lower end of the rope. The wavelength of the pulse when it reaches the top is (in $m$ )