The transverse displacement of a string (clamped at its both ends) is given by
$y(x, t)=0.06 \sin \left(\frac{2 \pi}{3} x\right) \cos (120 \pi t)$
where $x$ and $y$ are in $m$ and $t$ in $s$. The length of the string is $1.5\; m$ and its mass is $3.0 \times 10^{-2}\; kg$
Answer the following:
$(a)$ Does the function represent a travelling wave or a stationary wave?
$(b)$ Interpret the wave as a superposition of two waves travelling in opposite directions. What is the wavelength, frequency, and speed of each wave?
$(c)$ Determine the tension in the string.
The general equation representing a stationary wave is given by the displacement function
$y(x, t)=2 a \sin k x \cos \omega t$
This equation is similar to the given equation:
$y(x, t)=0.06 \sin \left(\frac{2}{3} x\right) \cos (120 \pi t)$
Hence, the given function represents a stationary wave.
A wave travelling along the positive $x$ -direction is given as:
$y_{1}=a \sin (\omega t-k x)$
The wave travelling along the negative $x$ -direction is given as:
$y_{2}=a \sin (\omega t+k x)$
The superposition of these two waves yields:
$y=y_{1}+y_{2}=a \sin (\omega t-k x)-a \sin (\omega t+k x)$
$=a \sin (\omega t) \cos (k x)-a \sin (k x) \cos (\omega t)-a \sin (\omega t) \cos (k x)-a \sin (k x) \cos (\omega t)$
$=-2 a \sin (k x) \cos (\omega t)$
$=-2 a \sin \left(\frac{2 \pi}{\lambda} x\right) \cos (2 \pi v t)\dots(i)$
The transverse displacement of the string is given as
$y(x, t)=0.06 \sin \left(\frac{2 \pi}{3} x\right) \cos (120 \pi t)\dots(ii)$
Comparing equations ( $i$ ) and $(ii)$, we have:
$\frac{2 \pi}{\lambda}=\frac{2 \pi}{3}$
Wavelength, $\lambda=3 \,m$
It is given that:
$120 \pi=2 \pi v$
Frequency, $v=60 \,Hz$
Wave speed, $v=v \lambda$
$=60 \times 3=180 \,m / s$
The velocity of a transverse wave travelling in a string is given by the relation:
$v=\sqrt{\frac{T}{\mu}}$
Where,
Velocity of the transverse wave, $v=180 \,m / s$
Mass of the string, $m=3.0 \times 10^{-2} \,kg$
Length of the string, $l=1.5 \,m$
Mass per unit length of the string, $\mu=\frac{m}{l}$
$=\frac{3.0}{1.5} \times 10^{-2}$
$=2 \times 10^{-2}\, kg\, m ^{-1}$
Tension in the string $=T$
$T=v^{2} \mu$
$=(180)^{2} \times 2 \times 10^{-2}$
$=648\, N$
If tension in a wire is made four times, then what will be the change in speed of wave propagating in it ?
Two pulses travel in mutually opposite directions in a string with a speed of $2.5 cm/s$ as shown in the figure. Initially the pulses are $10cm$ apart. What will be the state of the string after two seconds
$Assertion :$ Two waves moving in a uniform string having uniform tension cannot have different velocities.
$Reason :$ Elastic and inertial properties of string are same for all waves in same string. Moreover speed of wave in a string depends on its elastic and inertial properties only.
steel wire $0.72\; m$ long has a mass of $5.0 \times 10^{-3}\; kg .$ If the wire is under a tension of $60\; N ,$ what is the speed (in $m/s$) of transverse waves on the wire?
A wire of $10^{-2} kgm^{-1}$ passes over a frictionless light pulley fixed on the top of a frictionless inclined plane which makes an angle of $30^o$ with the horizontal. Masses $m$ and $M$ are tied at two ends of wire such that m rests on the plane and $M$ hangs freely vertically downwards. The entire system is in equilibrium and a transverse wave propagates along the wire with a velocity of $100 ms^{^{-1}}$.