A perfectly elastic uniform string is suspended vertically with its upper end fixed to the ceiling and the lower end loaded with the weight. If a transverse wave is imparted to the lower end of the string, the pulse will
not travel along the length of the string
travel upwards with increasing speed
travelled upwards with constant acceleration
both $(B)$ and $(C)$
A steel wire has a length of $12$ $m$ and a mass of $2.10$ $kg$. What will be the speed of a transverse wave on this wire when a tension of $2.06{\rm{ }} \times {10^4}$ $\mathrm{N}$ is applied ?
A uniform rope having some mass hanges vertically from a rigid support. A transverse wave pulse is produced at the lower end. The speed $(v)$ of the wave pulse varies with height $(h)$ from the lower end as:
A transverse wave travels on a taut steel wire with a velocity of ${v}$ when tension in it is $2.06 \times 10^{4} \;\mathrm{N} .$ When the tension is changed to $T$. the velocity changed to $\frac v2$. The value of $\mathrm{T}$ is close to
A mass of $20\ kg$ is hanging with support of two strings of same linear mass density. Now pulses are generated in both strings at same time near the joint at mass. Ratio of time, taken by a pulse travel through string $1$ to that taken by pulse on string $2$ is
A heavy ball of mass $M$ is suspended from the ceiling of car by a light string of mass $m (m << M)$. When the car is at rest, the speed of transverse waves in the string is $60\, ms^{-1}$. When the car has acceleration $a$ , the wave-speed increases to $60.5\, ms^{-1}$. The value of $a$ , in terms of gravitational acceleration $g$ is closest to