Activity of a radioactive substance can be represented by various unit. Select correct option
$1\ dps$ = $10^6\ Bq$
$1\ Ci$ = $3.7×10^{10}\ dps$
$1\ Ci$ = $1\ Bq$
$1\ Bq$ = $10^6\ Rd$
Radioactivity is
There are $10^{10}$ radioactive nuclei in a given radioactive element, Its half-life time is $1\, minute.$ How many nuclei will remain after $30\, seconds?$
$(\sqrt{2}=1.414)$
Sometimes a radioactive nucleus decays into a nucleus which itself is radioactive. An example is
$\mathop {^{38}S}\limits_{sulpher} \xrightarrow[{ - 2.48\,h}]{{half\,year}}\mathop {^{38}Cl}\limits_{chloride} \xrightarrow[{ - 0.62\,h}]{{half\,year}}\mathop {^{38}Ar}\limits_{Argon} $
Assume that we start with $1000$ $^{38}S$ nuclei at time $t = 0$. The number of $^{38} Cl$ is of count zero at $ t=0$ an will again be zero at $t = \infty $. At what value of $t,$ would the number of counts be a maximum ?
Using a nuclear counter the count rate of emitted particles from a radioactive source is measured. At $t = 0$ it was $1600$ counts per second and $t = 8\, seconds$ it was $100$ counts per second. The count rate observed, as counts per second, at $t = 6\, seconds$ is close to
Some nuclei of a radioactive material are undergoing radioactive decay. The time gap between the instances when a quarter of the nuclei have decayed and when half of the nuclei have decayed is given as:
(where $\lambda$ is the decay constant)