Adjoining figure shows a force of $40\, N$ acting at $30^o$ to the horizontal on a body of mass $5 \,kg$ resting on a smooth horizontal surface. Assuming that the acceleration of free-fall is $10\, ms^{-2}$, which of the following statements is (are) correct?

$[1]$ The horizontal force acting on the body is $20\, N$

$[2]$ The weight of the $5\, kg$ mass acts vertically downwards

$[3]$ The net vertical force acting on the body is $30\, N$

37-699

  • A

    $1, 2, 3$

  • B

    $1, 2$

  • C

    $2$ only

  • D

    $1$ only

Similar Questions

A $100$ $Newton$ weight is suspended in a corner of a room by two cords $A$ and $B$ as shown in the figure below. The tension in the horizontal cord $A$ is ............ $N$

A large number $(n)$ of identical beads, each of mass $m$ and radius $r$ are strung on a thin smooth rigid horizontal rod of length $L\, (L >> r)$ and are at rest at random positions. The rod is mounted between two rigid supports (see figure) . If one of the beads is now given a speed $v$, the average force experienced by each support after a long time is (assume all collisions are elastic)

  • [JEE MAIN 2015]

For given systen ${\theta _2}$ ....... $^o$ 

$A$ particle of mass m is constrained to move on $x$ -axis. $A$ force $F$ acts on the particle. $F$ always points toward the position labeled $E$. For example, when the particle is to the left of $E, F$ points to the right. The magnitude of $F$ is a constant $F$ except at point $E$ where it is zero. The system is horizontal. $F$ is the net force acting on the particle. The particle is displaced a distance $A$ towards left from the equilibrium position $E$ and released from rest at $t = 0.$ Velocity - time graph of the particle is

When body is at rest or it is in uniform motion, no force act on it.