Among the forces in nature, friction can be classified into
Electromagnetic
Gravitational
Nuclear
Other weak forces
A block of mass $m$ is moving with a constant acceleration a on a rough plane. If the coefficient of friction between the block and ground is $\mu $, the power delivered by the external agent after a time $t$ from the beginning is equal to
A block of weight $W$ is kept on a rough horizontal surface (friction coefficient $\mu$). Two forces $W/2$ each are applied as shown in the figure. Choose the $CORRECT$ statement :-
In the given arrangement the maximum value of $F$ for which there is no relative motion between the blocks
An isolated rail car originally moving with speed $v_0$ on a straight, frictionles, level track contains a large amount of sand. $A$ release valve on the bottom of the car malfunctions, and sand begins to pour out straight down relative to the rail car. What happens to the speed of the rail car as the sand pours out?
A rectangular box lies on a rough inclined surface. The coefficient of friction between the surface and the box is $\mu $. Let the mass of the box be $m$.
$(a)$ At what angle of inclination $\theta $ of the plane to the horizontal will the box just start to slide down the plane ?
$(b)$ What is the force acting on the box down the plane, if the angle of inclination of the plane is increased to $\alpha > \theta $ ?
$(c)$ What is the force needed to be applied upwards along the plane to make the box either remain stationary or just move up with uniform speed ?
$d)$ What is the force needed to be applied upwards along the plane to make the box move up the plane with acceleration $a$ ?