Gujarati
Hindi
7.Alternating Current
hard

An $LC$ circuit contains a  $20\,\,mH$  inductor and a $50\,\,\mu F$ capacitor with an initial charge of  $10 \,\,mC.$ The resistance of the circuit is negligible. Let the instant the circuit is closed be $t = 0.$  At what time is the energy stored completely magnetic $t=$ .......... $m/s$

A

$ 0$

B

$1.57$

C

$3.14$

D

$6.28$

Solution

Given, $\quad \mathrm{L}=20 \mathrm{mH}=20 \times 10^{-3} \mathrm{\,H}$

$\mathrm{C}=50 \mu \mathrm{F}=50 \times 10^{-6} \mathrm{\,F}$

For $LC$ circuit the frequency,

$\mathrm{f}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}} \quad \text { or } \mathrm{T}=2 \pi \sqrt{\mathrm{LC}} \quad\left(\because \mathrm{T}=\frac{1}{\mathrm{f}}\right)$

At time $\mathrm{t}=\frac{\mathrm{T}}{4},$ energy stored is completely magnetic,

The time, $\quad t=\frac{T}{4}$

$\mathrm{t}=\frac{2 \pi \sqrt{\mathrm{LC}}}{4}$

or $\mathrm{t}=\frac{2 \pi \sqrt{20 \times 10^{-3} \times 50 \times 10^{-6}}}{4}$

or $\mathrm{t}=\frac{3.14 \sqrt{10^{-6}}}{2}$ or $\mathrm{t}=\frac{3.14 \times 10^{-3}}{2}$

or $\mathrm{t}=1.57 \times 10^{-3} \mathrm{s}=1.57 \mathrm{\,ms}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.