An $\alpha$ particle and a proton are accelerated from rest through the same potential difference. The ratio of linear momenta acquired by above two particals will be.
$\sqrt{2}: 1$
$2 \sqrt{2}: 1$
$4 \sqrt{2}: 1$
$8: 1$
A charge $( - q)$ and another charge $( + Q)$ are kept at two points $A$ and $B$ respectively. Keeping the charge $( + Q)$ fixed at $B$, the charge $( - q)$ at $A$ is moved to another point $C$ such that $ABC$ forms an equilateral triangle of side $l$. The net work done in moving the charge $( - q)$ is
Four charges are arranged at the corners of a square $ABCD$ of side $d$, as shown in Figure
$(a)$ Find the work required to put together this arrangement.
$(b)$ A charge $q_{0}$ is brought to the centre $E$ of the square, the four charges being held fixed at its corners. How much extra work is needed to do this?
A particle of mass $100\, gm$ and charge $2\, \mu C$ is released from a distance of $50\, cm$ from a fixed charge of $5\, \mu C$. Find the speed of the particle when its distance from the fixed charge becomes $3\, m$. Neglect any other force........$m/s$
Explain electrostatic potential energy difference and give the noteworthy comments on it.
A point charge is surrounded symmetrically by six identical charges at distance $r$ as shown in the figure. How much work is done by the forces of electrostatic repulsion when the point charge $q$ at the centre is removed at infinity