An aeroplane flying $490 \,m$ above ground level at $100\, m/s$, releases a block. How far on ground will it strike ......... $km$
$0.1$
$1$
$2$
None
A slide with a frictionless curved surface, which becomes horizontal at its lower end,, is fixed on the terrace of a building of height $3 h$ from the ground, as shown in the figure. A spherical ball of mass $\mathrm{m}$ is released on the slide from rest at a height $h$ from the top of the terrace. The ball leaves the slide with a velocity $\vec{u}_0=u_0 \hat{x}$ and falls on the ground at a distance $d$ from the building making an angle $\theta$ with the horizontal. It bounces off with a velocity $\overrightarrow{\mathrm{v}}$ and reaches a maximum height $h_l$. The acceleration due to gravity is $g$ and the coefficient of restitution of the ground is $1 / \sqrt{3}$. Which of the following statement($s$) is(are) correct?
($AV$) $\vec{u}_0=\sqrt{2 g h} \hat{x}$ ($B$) $\vec{v}=\sqrt{2 g h}(\hat{x}-\hat{z})$ ($C$) $\theta=60^{\circ}$ ($D$) $d / h_1=2 \sqrt{3}$
A body is thrown horizontally from the top of a tower of height $5 \,m$. It touches the ground at a distance of $10 \,m$ from the foot of the tower. The initial velocity of the body is ......... $ms^{-1}$ ($g = 10\, ms^{-2}$)
An aeroplane is flying at a constant horizontal velocity of $600\, km/hr $ at an elevation of $6\, km$ towards a point directly above the target on the earth's surface. At an appropriate time, the pilot releases a ball so that it strikes the target at the earth. The ball will appear to be falling
A ball is rolled off the edge of a horizontal table at a speed of $4\, m/second$. It hits the ground after $0.4\, second$. Which statement given below is true