An aeroplane is flying horizontally with a velocity of $600\, km/h$ at a height of $1960\, m$. When it is vertically at a point $A$ on the ground, a bomb is released from it. The bomb strikes the ground at point $B$. The distance $AB$ is

  • A

    $1200 \,m$

  • B

    $0.33\, km$

  • C

    $3.33\, km$

  • D

    $33 \,km$

Similar Questions

A ball is thrown from the location $\left(x_0, y_0\right)=(0,0)$ of a horizontal playground with an initial speed $v_0$ at an angle $\theta_0$ from the $+x$-direction. The ball is to be hit by a stone, which is thrown at the same time from the location $\left(x_1, y_1\right)=(L, 0)$. The stone is thrown at an angle $\left(180-\theta_1\right)$ from the $+x$-direction with a suitable initial speed. For a fixed $v_0$, when $\left(\theta_0, \theta_1\right)=\left(45^{\circ}, 45^{\circ}\right)$, the stone hits the ball after time $T_1$, and when $\left(\theta_0, \theta_1\right)=\left(60^{\circ}, 30^{\circ}\right)$, it hits the ball after time $T_2$. In such a case, $\left(T_1 / T_2\right)^2$ is. . . . .

  • [IIT 2024]

A bomb is released from a horizontal flying aeroplane. The trajectory of bomb is

  • [AIIMS 2013]

A body is thrown horizontally from the top of a tower of height $5 \,m$. It touches the ground at a distance of $10 \,m$ from the foot of the tower. The initial velocity of the body is ......... $ms^{-1}$ ($g = 10\, ms^{-2}$)

Two guns $A$ and $B$ can fire bullets at speed $1\, km/s$ and $2\, km/s$ respectively. From a point on a horizontal ground, they are fired in all possible directions. The ratio of maximum areas covered by the bullets fired by the two guns, on the ground is

  • [JEE MAIN 2019]

A slide with a frictionless curved surface, which becomes horizontal at its lower end,, is fixed on the terrace of a building of height $3 h$ from the ground, as shown in the figure. A spherical ball of mass $\mathrm{m}$ is released on the slide from rest at a height $h$ from the top of the terrace. The ball leaves the slide with a velocity $\vec{u}_0=u_0 \hat{x}$ and falls on the ground at a distance $d$ from the building making an angle $\theta$ with the horizontal. It bounces off with a velocity $\overrightarrow{\mathrm{v}}$ and reaches a maximum height $h_l$. The acceleration due to gravity is $g$ and the coefficient of restitution of the ground is $1 / \sqrt{3}$. Which of the following statement($s$) is(are) correct?

($AV$) $\vec{u}_0=\sqrt{2 g h} \hat{x}$ ($B$) $\vec{v}=\sqrt{2 g h}(\hat{x}-\hat{z})$  ($C$) $\theta=60^{\circ}$  ($D$) $d / h_1=2 \sqrt{3}$

  • [IIT 2023]