આકૃતિનાં દર્શાવ્યા મુજબની જ પૃથ્વીની સપાટીને સમક્ષિતિજ રહે તેમ ગોઠવવામાં આવેલ છે. આ સ્થિતિમાં સ્પ્રિંગો પર કોઈ તણાવ નથી સામાન્ય સ્થિતિમાં છે. જો ડાબી તરફનું દળ ડાબી તરફ અને જમણી તરફનું દળ જમણી તરફ સરખા અંતેર ખેંચીને છોડવામાં આવે છે. જો પરિણામી અથડામણ સ્થિતિ સ્થાપક હોય તો આ પ્રણાલીના દોલનોનો આવર્તકાળ કેટલો હશે ?
$2 \pi \sqrt{\frac{2 m}{k}}$
$2 \pi \sqrt{\frac{m}{2 k}}$
$\pi \sqrt{\frac{m}{k}}$
$2 \pi \sqrt{\frac{m}{k}}$
સ્પ્રિંગના છેડે લટકાવેલ પદાર્થના દોલનો સ.આ. હોવા માટેની શરત લખો.
એક બ્લૉક જેનું દ્રવ્યમાન $1\, kg$ છે તેને સ્પ્રિંગ સાથે બાંધેલ છે. આ સ્પ્રિંગનો સ્પ્રિંગ અચળાંક $50 \,N\,m^{-1}$ છે. આ બ્લૉકને ઘર્ષણરહિત સપાટી પર $t = 0$ સમયે તેના સંતુલન સ્થાન $x = 0$ આગળ સ્થિર સ્થિતિમાંથી ખેંચીને $x = 10 \,cm$ અંતરે લાવવામાં આવે છે. જ્યારે તે મધ્યમાન સ્થિતિથી $5$ સેમી દૂર છે ત્યારે આ બ્લૉકની ગતિઊર્જા, સ્થિતિઊર્જા અને કુલ ઊર્જાની ગણતરી કરો.
$K$ બળ અચળાંક ધરાવતી સ્પ્રિંગ પર એક પદાર્થ આકૃતિમાં દર્શાવ્યા મુજબ છે. તેની ગતિનું સમીકરણ $x(t)= A sin \omega t+ Bcos\omega t$, જ્યાં $\omega=\sqrt{\frac{K}{m}}$ છે. $t=0$ સમયે દળનું સ્થાન $x(0)$ અને વેગ $v(0)$ હોય, તો સ્થાનાંતરને $x(t)=C \cos (\omega t-\phi)$ મુજબ આપવામાં આવે છે, જ્યાં $C$ અને $\phi$ કેટલા હશે?
$k$ બળ અચળાંક ધરાવતી સ્પ્રિંગના બે ટુકડા કરવામાં આવે છે,મોટા ટુકડાની લંબાઇ નાના ટુકડાની લંબાઇ કરતાં બમણી છે,તો મોટા ટુકડાનો બળ અચળાંક કેટલો થાય?
જો કોઈ સ્પ્રિંગને $100 \,g$ દળ $9.8$ સેમી જેટલી ખેંચી શકે છે. જ્યારે તેને ઊર્ધ્વ દિશામાં લટકાવેલી હોય. જો $6.28 \,s$ નો આવર્તકાળ ધરાવતી ગતી કરવાની હોય તો તેની સાથે હવે ............ $g$ દળ ઉમેરવું જોઈએ.