An electric charge $10^{-3}\ \mu C$ is placed at the origin $(0, 0)$ of $X-Y$ coordinate system. Two points $A$ and $B$ are situated at $(\sqrt 2 ,\sqrt 2 )$ and $(2, 0)$ respectively. The potential difference between the points $A$ and $B$ will be......$V$
$9$
$0$
$2$
$4.5$
If eight identical drops are joined to form a bigger drop, the potential on bigger as compared to that on smaller drop will be
Three concentric metallic spherical shell $A, B$ and $C$ or radii $a, b$ and $c$ $(a < b < c)$ have surface charge densities $- \sigma , + \sigma ,$ and $- \sigma $ respectively. The potential of shell $A$ is :
Four point charges $-Q, -q, 2q$ and $2Q$ are placed, one at each comer of the square. The relation between $Q$ and $q$ for which the potential at the centre of the square is zero is
The potential at a distance $R/2$ from the centre of a conducting sphere of radius $ R$ will be
Consider two conducting spheres of radii ${{\rm{R}}_1}$ and ${{\rm{R}}_2}$ with $\left( {{{\rm{R}}_1} > {{\rm{R}}_2}} \right)$. If the two are at the same potential, the larger sphere has more charge than the smaller sphere. State whether the charge density of the smaller sphere is more or less than that of the larger one.