An electric field, $\overrightarrow{\mathrm{E}}=\frac{2 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+8 \hat{\mathrm{k}}}{\sqrt{6}}$ passes through the surface of $4 \mathrm{~m}^2$ area having unit vector $\hat{\mathrm{n}}=\left(\frac{2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{6}}\right)$. The electric flux for that surface is $\mathrm{Vm}$
$12$
$13$
$15$
$16$
Figure shows electric field lines due to a charge configuration, from this we conclude that
A sphere of radius $R$ and charge $Q$ is placed inside a concentric imaginary sphere of radius $2R$. The flux associated with the imaginary sphere is
Given below are two statement: one is labelled as Assertion $A$ and the other is labelled as Reason $R$.
Assertion $A:$ If an electric dipole of dipole moment $30 \times 10^{-5}\,Cm$ is enclosed by a closed surface, the net flux coming out of the surface will be zero.
Reason $R$ : Electric dipole consists of two equal and opposite charges.
In the light of above, statements, choose the correct answer from the options given below:
The black shapes in the figure below are closed surfaces. The electric field lines are in red. For which case, the net flux through the surfaces is non-zero?
Give characteristics of electric field lines.