What is the net flux of the uniform electric field of $E =3 \times 10^{3} i\; N / C $ through a cube of side $20\; cm$ oriented so that its faces are parallel to the coordinate planes?
All the faces of a cube are parallel to the coordinate axes. Therefore, the number of field lines entering the cube is equal to the number of field lines piercing out of the cube. As a result, net flux through the cube is zero.
Consider an electric field $\vec{E}=E_0 \hat{x}$, where $E_0$ is a constant. The flux through the shaded area (as shown in the figure) due to this field is
The electric field in a certain region is acting radially outward and is given by $E =Ar.$ A charge contained in a sphere of radius $'a'$ centred at the origin of the field, will be given by
A charge $+q$ is placed somewhere inside the cavity of a thick conducting spherical shell of inner radius $R_1$ and outer radius $R_2$. A charge $+Q$ is placed at a distance $r > R_2$ from the centre of the shell. Then the electric field in the hollow cavity
Gauss’s law states that
The electric field in a region is given $\overrightarrow{ E }=\left(\frac{3}{5} E _{0} \hat{ i }+\frac{4}{5} E _{0} \hat{ j }\right) \frac{ N }{ C } .$ The ratio of flux of reported field through the rectangular surface of area $0.2\, m ^{2}$ (parallel to $y - z$ plane) to that of the surface of area $0.3\, m ^{2}$ (parallel to $x - z$ plane $)$ is $a : b ,$ where $a =$ .............
[Here $\hat{ i }, \hat{ j }$ and $\hat{ k }$ are unit vectors along $x , y$ and $z-$axes respectively]