An electric point charge $10^{-3}\,\mu C$ is placed at the origin $(0, 0)$ of $X-Y$ co- ordinate system. Two points $A$ and $B$ are situated at $(\sqrt 2, \sqrt 2)$ and $(2, 0)$ respectively. The potential difference between the points $A$ and $B$ will be.....$volt$
$9 $
$0$
$2$
$3.5$
In infinite long uniformly charged string is placed along $z-$ axis. Its linear charge density is $\lambda $. A point charge $q$ is moved from position $(a, 0, 0)$ to $(2a, 0, 0)$ then work done will be
The four capacitors, each of $25\,\mu F$ are connected as shown in Fig. The $dc$ voltmeter reads $200\,V$. The charge on each plate of capacitor is
Consider a system of there charges $\frac{q}{3},\,\frac{q}{3}$ and $-\frac{2q}{3}$ placed at point $A, B$ and $C,$ respectively, as shown in the figure. Take $O$ to be the centre of the circle of radius $R$ and $\angle CAB\, = \,{60^o}$
There is a square gaussian surface placed in $y-z$ plane. Its axis is along $x-$ axis and centre is at origin. Two identical charges, each $Q$, are placed at point $(a, 0, 0)$ and $(-a, 0, 0)$. Each side length of square is $2a$ then electric flux passing through the square is
In the circuit shown, a potential difference of $30\, V$ is applied across $AB$ . The potential difference between the points $M$ and $N$ is....$V$