A thin metallic spherical shell contains a charge $Q$ on it. A point charge $+q$ is placed at the centre of the shell and another charge $q'$ is placed outside it as shown in fig. All the three charges are positive. The force on the charge at the centre is :-
zero
toward left
toward right
upward
Two identical parallel plate capacitor are placed in series and connected to a constant voltage source of $V_0\, volt$. If one of the capacitors is completely immersed in a liquid with dielectric constant $K$, the potential difference between the plates of the other capacitor will change to
A charge $q$ is placed at the centre of the line joining two equal charges $Q$. The system of the three charges will be in equilibrium, if $q$ is equal to
Two charges $q_1$ and $q_2$ are placed $30\,cm$ apart, as shown in the figure. A third charge $q_3$ is moved along the arc of a circle of radius $40\,cm$ from $C$ to $D$. The change in the potential energy of the $\frac{{{q_3}}}{{4\pi \,{ \in _0}}}k$ , where $k$ is
Five balls marked a to $e$ are suspended using separate threads. Pairs $(b, c)$ and $(d, e)$ show electrostatic repulsion while pairs $(a, b),(c, e)$ and $(a, e)$ show electrostatic attraction. The ball marked a must be
A charge $2\,\mu C$ is taken from infinity to a point in an electric field, without changing its velocity. If work done against forces is $20\,\mu J$ then potential at that point will be.....$V$